## Solution Exercise 05-01: Criticality classes and measures

## **Solution exercise 1: Condensation**

Thermal potential:

Reaction: 
$$\Delta T_{ad} = \frac{Q'_{rx}}{c'_{p}} = \frac{230kJkg^{-1}}{1,7kJkg^{-1}K^{-1}} = 135K$$

Decomposition: 
$$\Delta T_{ad} = \frac{Q'_{rx}}{c'_{p}} = \frac{150kJkg^{-1}}{1,7kJkg^{-1}K^{-1}} = 89K$$

Assuming 100 % accumulation, the la decomposition would be triggered and the overall potential was rated « critical ».

Taking the accumulation into account:

$$MTSR = T_p + X_{ac} \cdot \Delta T_{ad} = 40 + 0,3 \times 135 = 81^{\circ}C$$

MTSR<T<sub>D24</sub>=130°C, hence the decomposition will not be triggered after a cooling failure, as long as the feed is immediately stopped.

The thermal potential is rated « negligible », but the boiling point can be reached (MTT=56°C=329K)

The criticality class is 3.

The amount of vapour released is:

$$Mv = \frac{\left(MTSR - MTT\right) \cdot c_p' \cdot M_r}{\Delta H_p'} = \frac{\left(81^{\circ}C - 56^{\circ}C\right) \times 1,7 \ kJ \ kg^{-1}K^{-1} \times 2500 \ kg}{523 \ kJ \ kg^{-1}} = 203kg_{vap}$$

$$\rho_{v} = \frac{PM_{w}}{RT} = \frac{1bar \times 58 \ kg \ kmol^{-1}}{0.08315 \ m^{3}bar \ kmol^{-1}K^{-1} \times 329K} = 2.12 \ kg \ m^{-3}$$

The volume of flammable mixture is:

$$V_{ex} = \frac{M_v}{\rho_v \cdot LIE} = \frac{203 \text{ kg}}{2,12 \text{ kg m}^{-3} \times 0.016} \cong 5885 \text{ m}^3$$

Extension: 
$$r = \sqrt[3]{\frac{3V_{ex}}{2\pi}} = \sqrt[3]{\frac{3 \times 5985}{2 \times 3,14}} \square 14 \ m$$

The flammable cloud may reach the site fences: severity rated « critical ».

Thermal activity at MTT:

$$\begin{aligned} q_{(MTT)} &= q_{rx} \cdot \exp\left[\frac{E}{R}\left(\frac{1}{T_p} - \frac{1}{MTT}\right)\right] \cdot \frac{MTSR - MTT}{MTSR - T_p} \\ q_{(MTT)} &= 20 \ W \ kg^{-1} \cdot \exp\left[\frac{100000}{8,314}\left(\frac{1}{313} - \frac{1}{329}\right)\right] \cdot \frac{81 - 56}{81 - 40} = 20 \times 6,5 \times 0,6 \approx 80 \ W \ kg^{-1} \end{aligned}$$

The total heat release is 200kW for the charge of 2500 kg. Hence the condenser power of 250 kW is sufficient.

Vapour velocity:

- Mass flow rate : 
$$\dot{m}_v = \frac{80 W kg^{-1} \times 2500 kg}{523000 J kg^{-1}} = 0.382 kg s^{-1}$$

- Volume flow rate : 
$$\dot{v}_v = \frac{0.382 \text{ kg s}^{-1}}{2.12 \text{ kg m}^{-3}} = 0.18 \text{ m}^3 \text{s}^{-1}$$

- Pipe section : 
$$S = \pi \frac{0.25^2}{4} = 0.049 m^2$$

- Vapour velocity: 
$$u = \frac{0.18m^3 s^{-1}}{0.049m^2} = 3.7m \ s^{-1}$$

Thus, the probability of loss of control is low. The situation can be mastered as far as the condenser remains in operation in case of cooling failure on the reactor.